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BACKGROUND: Ambient fine particulate matter [PM ≤2:5 lm in aerodynamic diameter (PM2:5)] is a major health risk for children, particularly in
South Asia, which currently experiences the highest PM2:5 levels globally. Nevertheless, there is comparatively little epidemiological evidence from
this region to quantify the effects of PM2:5 on child survival.

OBJECTIVES:We estimated the association between PM2:5 exposure and child survival in India.
METHODS:We constructed a large, retrospective, and nationally representative cohort of children <5 years of age, born between 2009–2016, from the
publicly available, cross-sectional 2015–2016 Demographic Health Surveys in India. In utero and post-delivery lifetime average ambient PM2:5 expo-
sures were estimated with data from satellite remote sensing, meteorology, and land use information (model R2 = 0.82). We used Cox proportional
hazards regression to estimate the association between both average in utero and post-delivery lifetime PM2:5 and all-cause child mortality, control-
ling for individual- and household-level covariates, seasonality, location, and meteorology.

RESULTS: Over 7,447,724 child-months of follow-up, there were 11,559 deaths at <5 years of age reported by the children’s mothers. The mean concen-
trations of 9-month in utero and post-delivery lifetime average ambient PM2:5 exposure were 71:1 lg=m3 (range: 20:9–153:5 lg=m3) and 73:7 lg=m3

(range: 14:0–247:3 lg=m3), respectively. Estimated child mortality adjusted hazard ratios were 1.023 [95% confidence interval (CI): 1.008, 1.038] and
1.013 (95%CI: 1.001, 1.026) per 10-lg=m3 increase of in utero and post-delivery lifetime PM2:5, with both exposures in themodel.

DISCUSSION: This study adds to the growing body of evidence about the adverse health effects of PM2:5 by demonstrating the association between ex-
posure, both in utero and post-delivery, on child survival at the national level in India. Strategies to reduce ambient air pollution levels, including
steps to minimize in utero and early life exposures, are urgently needed in India and other countries where exposures are above recommended guide-
line values. https://doi.org/10.1289/EHP8910

Introduction
Fine particulate matter [airborne particles with an aerodynamic di-
ameter of ≤2:5 lm (PM2:5)] has been shown to be associated with
adverse health effects in children, including preterm birth
(Balakrishnan et al. 2018; Huynh et al. 2006; Li et al. 2018; Stieb
et al. 2012), low birth weight (LBW) (Bell et al. 2007; Pedersen
et al. 2013), low height-for-age z-score (Spears et al. 2019), respi-
ratory infections (Gurley et al. 2013; Smith et al. 2011), and mor-
tality (Heft-Neal et al. 2018; Son et al. 2017;Woodruff et al. 2006).
In India, ambient PM2:5 levels are among the highest in the world,
with an estimated 91:7lg=m3 population-weighted annual average
(India State-Level Disease Burden Initiative Air Pollution
Collaborators 2021) in 2019. The Global Burden of Disease
(GBD) Project identified ambient PM2:5 as the second largest risk

factor for disease burden in India (GBD 2019Diseases and Injuries
Collaborators 2020) and estimated that >980,000 premature
deaths every year are associated with ambient PM2:5 air pollution
(India State-Level Disease Burden Initiative Air Pollution
Collaborators 2021), >49,000 of which are premature deaths
in children at <5 years of age (India State-Level Disease Burden
Initiative Air Pollution Collaborators 2019, 2021). To date, how-
ever, most evidence on child mortality due to exposure to ambient
air pollution during pregnancy and early childhood was from
regions with lower ambient PM2:5 levels (Glinianaia et al. 2004;
Hans et al. 2011; Son et al. 2017; Woodruff et al. 1997, 2006).
Although prospective pregnant mother–child cohort studies have
recently been initiated in India to examine the association between
air pollution exposure and indicators of child health, such as birth-
weight (Balakrishnan et al. 2015, 2018; Clasen et al. 2020), to our
knowledge, estimates of child mortality have not been reported.
Furthermore, owing to the low density of ambient air pollutionmon-
itoring stations in India and other low- andmiddle-income countries
(LMICs) (Brauer et al. 2019; Landrigan et al. 2018), current studies
of air pollution and infant mortality in India and LMICs are mainly
based on annual average ambient PM2:5 prediction models
(Shaddick et al. 2018; van Donkelaar et al. 2016). Such exposure
estimates may be prone to error or misclassification, especially for
outcomes such as child mortality, which has been associated with
monthly or daily changes in air pollution levels (Hans et al. 2011;
Son et al. 2017). The recent expansion in the number of ground
PM2:5 monitoring stations in India and the development of spatial
PM2:5 prediction models enable more spatiotemporally resolved
estimation of ambient PM2:5 exposure throughout India.

The primary objective of our study was to evaluate the associ-
ation between child mortality and ambient PM2:5 exposure during
in utero and post-delivery lifetime periods among a nationally
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representative, retrospective cohort based on maternal-reported
data in the Demographic and Health Surveys [DHS, also known
as the National Family Health Survey 2015–2016 (NFHS-4)] in
India. To estimate time-dependent ambient PM2:5 exposure for
the cohort, we developed a monthly ambient PM2:5 model with
0.1° resolution between 2009–2018 over the entire Indian sub-
continent. Our ground station–validated model was developed
using machine learning, with multiple inputs from satellite
remote sensing, meteorological data, and land use information.

Methods

Study Design and Population
We conducted a retrospective cohort study of a nationally repre-
sentative sample of children 0–59 months of age born throughout
India (as of 2019, 29 states and 5 Union Territories, excluding
the Andaman and Nicobar Islands and Lakshadweep Union
Territories), whose mothers participated in the 2015–2016 DHS/
NFHS-4 between January 2015 and November 2016. The design
of the DHS/NFHS-4 has been described elsewhere (IIPS and ICF
2017). Briefly, DHS/NFHS-4 is cross-sectional survey using a
two-stage stratified sampling framework to collect information
from a nationally representative sample of households with
women 15–49 years of age and all of their children. Each re-
spondent answered survey questions separately for all children
no matter whether the child was still alive at the time of inter-
view. We included children born to women no more than 5 y pre-
ceding the survey. Three tiers of all-cause mortality—including
neonatal mortality (death at <1month of age), infant mortality
(death at <12months of age), and child mortality (death at
<60months of age)—were outcome variables in our study. Child
birth year and month, child death year and month (if the child
died before interview), and potential confounders were reported
by mothers during the DHS/NFHS-4 interview during the 2015–
2016 period. The child-, maternal-, and household-level covari-
ates were also reported by mothers at the end of the follow-up pe-
riod. We calculated follow-up time in months, starting from child
birth until child death as the failure event and the month of the
DHS/NFHS-4 survey or passing the at-risk age as the censoring
event.

Because this study analyzed only publicly available data with-
out personal identifiers, the institutional review board (IRB) of
Emory University determined this study not to be human subject
research and did not require IRB review. Data analyses were con-
ducted between March and September 2019.

Ambient PM2:5 Exposure and Meteorological Variables
In this study, we developed a random forest (RF) model to predict
monthly ambient PM2:5 concentrations at a 0.1° spatial resolution
(∼ 11 km at the equator) over the entire Indian subcontinent, from
2009 to 2018 (10 y). This approach has been shown to have reliable
historical prediction capabilities, to allow a variety of input varia-
bles, and to have good agreement with ground measurements from
previous studies for modeling ambient PM2:5 concentrations in
East Asia and Latin America (Vu et al. 2019; Xiao et al. 2018).
Other advantages of RFs are that thesemodels canworkwith corre-
lated predictors, can provide variable importance vectors to com-
pare the influence of variables, and are not likely to overfit (Xiao
et al. 2018).

First, we collected daily ambient PM2:5 concentration between
2015 and 2018 from air monitoring stations across India from the
Central Pollution Control Board (https://app.cpcbccr.com/ccr/#/
caaqm-dashboard-all/caaqm-landing) and hourly data at the U.S.
Embassy and Consulates in India from AirNow (https://airnow.

gov/). We excluded daily PM2:5 concentrations that were outside
of 3 standard deviations of the mean for the log-transformed data
(0.05%; exclusions were values outside of 4:2–845lg=m3)
becausewe believed thesemeasurementsmay not be plausible. For
hourly PM2:5 concentration data from U.S. embassies or consu-
lates, we removed data that lacked valid quality checks and daily
average concentrations with at <18 hourlymeasurements (2.2%).

Daily average PM2:5 measurements from stations within the
same 0:1� ×0:1� grid were averaged, resulting in 56,834 grid-day
PM2:5 measurements (Table S1). We averaged gridded daily
PM2:5 measurements into gridded monthly PM2:5 averages if
more than 15 d had valid daily measurements for a given grid
cell in a given month. We ended up with 1,446 grid-months of
PM2:5 measurements during 2017–2018 from 134 ground air pol-
lution monitoring stations for model development and 465 grid-
months of PM2:5 measurements during 2015–2016 from 57 sta-
tions for model hindcasting evaluation.

We used multiple satellite-retrieved aerosol, nitrogen dioxide
(NO2), fire spot data, and vegetation index products; global mete-
orological and aerosol reanalysis models; land use information;
and population density data for the period between 2009 and 2018
as inputs for our model. Briefly, we used Moderate Resolution
Imaging Spectroradiometer (MODIS) Collection 6 level-2 aerosol
optical depth (AOD) products (MOD04_L2 and MYD04_L2) at a
10-km resolution collected by the Aqua and Terra satellites, from
the Distributed Active Archive Center (https://ladsweb.modaps.
eosdis.nasa.gov/) (Levy and Hsu 2015). We used Deep Blue (DB)
and Deep Blue/Dark Target combined parameters (Combined)
from MODIS retrials and assigned and averaged the centroid of
each retrial to create 0:1� ×0:1� grid cells and calculate monthly
average AOD value for DB and Combined algorithms. We then
conducted gap-filling of the missing AOD values for the period
similar to previous study (Xiao et al. 2018). Table S2 summarizes
the AOD data missingness patterns, and Figure S1 shows the
Combined AOD parameter and DB AOD parameter spatial distri-
bution after gap-filling. The aerosol absorbing index in visible and
ultraviolet light and tropospheric NO2 density data were obtained
from the Ozone Monitoring Instrument, downloaded from the
Goddard Earth Sciences Data and Information Service Center
(https://mirador.gsfc.nasa.gov/). We also collected active fire data
obtained from the Information for Resource Management System
(https://earthdata.nasa.gov/earth-observation-data/near-real-time/
firms) and the Normalized Difference Vegetation Index from the
MODIS Vegetation Indices in the Distributed Active Archive
Center (https://ladsweb.modaps.eosdis.nasa.gov/).

Daily meteorological data and aerosol diagnostics were
obtained from the Goddard Earth Observing System Data
Assimilation System 5/Modern-Era Retrospective analysis for
Research and Applications (MERRA-2; https://gmao.gsfc.nasa.
gov/reanalysis/MERRA-2/) (Bosilovich et al. 2015). Elevation
data was collected from the National Aeronautics and Space
Administration’s Advanced Spaceborne Thermal Emission and
Reflection Radiometer Global Digital Elevation Model (version
2). Highway, primary road, and other road density parameters
were obtained from the Global Roads Inventory Project (Meijer
et al. 2018). Yearly varying population numbers for 2009–2018
were obtained from the LandScan Global Population Database.
All of the above variables were assigned into 0:1� ×0:1� grid
cells, and their monthly averages were used as predictors in the
PM2:5 model. Details of these variables are listed in Table S3.

We trained the RFmodel on gridded monthly mean PM2:5 con-
centrations from the 2017–2018 period (N =1,446) and evaluated
model performance using standard, spatial, and temporal 10-fold
cross-validation (CV). Spatial CV refers to using data from 90% of
grids for developing the model and then testing the model on the
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remaining 10% of grids; temporal CV relies on using 90% of
monthly data to develop the model and then testing the model
based on the remaining 10% of monthly data. We also evaluated
the hindcasting performance of the model using monthly data
from the 2015–2016 period (N =456). Root-mean-squared error
(RMSE) and R2 values from 10-fold cross-validation and from
hindcasting were reported to evaluate the historical prediction per-
formance of the model. We then estimated population-weighted
annual mean PM2:5 concentrations over India during 2009–2018,
evaluated the change of PM2:5 levels over those 10 y, and com-
pared our estimates with other published databases (India State-
Level Disease Burden Initiative Air Pollution Collaborators 2019;
Shaddick et al. 2018; vanDonkelaar et al. 2016). Predicted ambient
monthly PM2:5 levels were matched to each child with geo-
coordinates at the cluster level [a primary sampling unit (PSU) or a
segment of a PSU, of around 100–150 households] provided by
DHS/NFHS-4. For each child, we assigned the 9-month average
PM2:5 concentrations prior to birth as the in utero PM2:5 exposure.
We treated post-delivery average PM2:5 exposures as time depend-
ent and defined them as the average PM2:5 concentration from the
calendar month of child birth through each month the child was at
risk, until themonth of death or censoring.

Meteorological variables includingmonthly air temperatures at
2 m and monthly rainfall precipitation were included as well, and
they were also matched with the geo-coordinates of households (in
the same way as performed for PM2:5 exposure). Monthly air tem-
peratures at 2 m values were extracted from MERRA-2 data
(Bosilovich et al. 2015), and monthly rainfall precipitation in mm/
month were extracted from Climate Hazards Group InfraRed
Precipitation with Station data (Funk et al. 2015). R (version 3.5; R
Development Core Team) with the randomForestSRC (version
4.6) package was used for PM2:5 modeling, prediction, and assign-
ment of PM2:5 andmeteorological variables for each child.

Statistical Analysis
We used Cox proportional hazards regression models with follow-
up in calendar months as the time variable and child death as the
outcome.We included 9-month in utero and time-dependent, post-
delivery average ambient PM2:5 exposure to estimate adjusted haz-
ard ratios (HRs) relating child mortality risk with 10-lg=m3

increases of PM2:5 exposure. In this model, the estimated effects of
PM2:5 exposure during in utero and post-delivery periods were
adjusted for each other. We also used single-exposure models with
PM2:5 exposures from either the in utero or post-delivery periods
for comparison.We used a set of confounders from the previous lit-
erature and a directed acyclic graph (Figure S2) to identify covari-
ates to be included in the Cox regression model (Heft-Neal et al.
2018; Spears et al. 2019; Subramanian et al. 2009). The prespeci-
fied time-independent covariates included child sex, birth month
and year, birth order, and location of birth (institutional birth or
not); multibirths; and mother’s age at child birth, height, marital
status, education (whether above secondary level), maternal smok-
ing (yes/no), secondhand smoke exposure in the home (yes/no),
wealth index, urban or rural location of households, geographical
region/zonal council (Northern, Central, North Eastern, Eastern,
Western, and Southern, based on https://www.mha.gov.in/zonal-
council), primary cooking fuel, and toilet facilities. The household
wealth index was calculated and provided by DHS/NFHS-4 using
principle component analysis of household ownership of assets
(Staveteig and Mallick 2014). We dichotomized toilet facilities as
whether they were safely managed based on the World Health
Organization (WHO) and United Nations Children’s Fund Joint
Monitoring Program (Croft et al. 2018; WHO/UNICEF JMP for
Water Supply, Sanitation and Hygiene 2018), and dichotomized
cooking fuel as clean (electricity, liquefied petroleum gas, natural

gas, and biogas) or dirty (kerosene, coal, wood, straw, agriculture
crop residue, and dung). Time-dependent covariates included
monthly rainfall precipitation and monthly temperature. Child
birth year and month, sex, and the geographical region of house-
holds were modeled as strata. Unique baseline hazard functions
were given for all 927 strata of combinations of these strata.
Robust variance estimation for coefficients was used. For tied out-
comes, Breslow’s method was used. Table S4 provides the details
on the variables used in the Cox regression models. Although we
did not include children born with LBW because it has been found
to be a potential intermediate variable between air pollution and
childhood death (Hernández-Díaz et al. 2006), we conducted sensi-
tivity analysis adjusting for LBW in our study population, as
described below.We also tested the association between LBW and
in utero PM2:5 exposure, and between LBW and child mortality.
We stratified the Cox regression by child birth month and year,
child sex, and geographical regions (927 strata) to account for spa-
tiotemporal and sex differences in child survival. In addition, we
included the sample probability weight from DHS/NFHS-4 in the
Cox regression (Equation 1).

hgðt,Z,XðtÞÞ= h0gðtÞ exp ½bTZ + dTXðtÞ�: (1)

hgðtÞ is the hazard function (probability of death) at month t,
and g refers to the (1–927) strata of child birthmonth, sex, and geo-
graphical location. Z is the vector containing time-independent
variables, including in utero PM2:5 exposure, andXðtÞ are the time-
dependent variables including post-delivery PM2:5 exposure. The
association between PM2:5 and child mortality was reported as
the HR per 10-lg=m3 increase of PM2:5, and we also calculated the
HR per interquartile range (IQR) increase of PM2:5 (40:6lg=m3)
to compare other studies. To evaluate whether effects of PM2:5 dif-
fered across covariates, we conducted subgroup stratified analysis
of the two-exposure models. The proportional hazards assumption
for in utero and post-delivery average PM2:5 exposure was tested
on the basis of Schoenfeld residuals on time, and we found it did
not violate the proportional hazards assumption (p>0:05). The
correlation matrix of the predictor estimation from the Cox regres-
sion model was calculated to check multicollinearity, and the
Akaike information criterion (AIC) was calculated to compare sin-
gle- and two-exposure models. We conducted subgroup analysis
by conducting separate models by stratifying variables including
sex, LBW, delivery mode, whether multibirth, maternal age,
maternal height, education, maternal smoking, secondhand smok-
ing, household wealth index, cook fuel type, toilet type, urbanity,
marital status, and geographical location, andwe tested the hypoth-
esis that there were no interaction effects between in utero and
post-delivery PM2:5 effects with each of the stratifying variables.

To examine the robustness of our results, we conducted addi-
tional sensitivity analyses. We added LBW back to the model
(modify 1); conducted analysis using stratified variables as time-
independent covariates (modify 2); adding additional cluster-
level covariates, including the percentage of household with
improved toilets and clean cooking fuels (modify 3); performing
unweighted analysis without sample weight (modify 4); using
generalized estimating equations to account for the additional
correlation within household (modify 5) and cluster level (modify
6); replacing post-delivery lifetime PM2:5 exposure with monthly
exposure (modify 7); and performing crude analysis without
adjusting covariates (modify 8). In addition, we also conducted
an analysis treating in utero and post-delivery PM2:5 as categori-
cal variables using quartiles of exposure in the model and tested
the linear trend of the categorized exposure.

Last, we calculated the population attributable fraction (PAF)
as the burden of child mortality from ambient PM2:5 exposure.
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We estimated the PAF from the modeled in utero PM2:5 exposure
distribution by every 10th percentile, and the risk of mortality
(derived from the single-exposure model only) at a given expo-
sure level compared baseline exposure levels. Stata (version 14;
StataCorp) and R (version 3.6; R Development Core Team) were
used in the statistical analyses.

Results
The RF PM2:5 prediction model characterized monthly PM2:5 lev-
els well, with CV R2 = 0.82 at the monthly level (RMSE of
25lg=m3) in 2017–2018. The spatial and temporal CV R2

(RMSE) of the RF model was 0.77 (26lg=m3) and 0.77
(25lg=m3) respectively, indicating a stable and good fit of
monthly ambient PM2:5 measurements from ground stations.
Compared with historical measurements in 2015–2016, our
model provided good predictions of monthly PM2:5 with R2

(RMSE) of 0.82 (32lg=m3). Figure S4 shows the performance
of the CV and hindcasting of the RF model. Figure S3 shows
changes in model performance across different numbers of deci-
sion trees and the variable importance matrix for the model. The
historical prediction shows that our model underestimated PM2:5
levels during periods with extreme levels, when monthly PM2:5
levels were >350lg=m3. Regardless, our model still had rela-
tively good hindcasting capacity to predict historical monthly
PM2:5 levels. The annual within-sample RMSE from the model
CV in 2017–2018 was 10:9lg=m3, and the annual RMSE from
historical hindcasting in 2015–2016 was 21:7 lg=m3, with better
performance compared with previous ambient air pollution mod-
els used in the GBD study in the South Asia Region (Shaddick
et al. 2018), which had within-sample RMSE of 17:6 lg=m3.

Figure 1 shows the predicted annual PM2:5 in India in 2018
and the annualized change of PM2:5 over a 10-y period. The pre-
dicted annual population-weighted mean PM2:5 in India in 2018
was 71:7 lg=m3. The highest annual PM2:5 concentrations
(>120lg=m3) were in the Indo-Gangetic Plain Region, covering
the states of Haryana, Uttar Pradesh, and Bihar and the National
Capital Territory of Delhi. These values are three times
>40 lg=m3, the recommended limit set by the National Ambient
Air Quality Standards of India (Gautam 2009). We observed

increased ambient PM2:5 concentrations over a 10-y period in
most areas, with the strongest increase of ambient PM2:5 concen-
trations at ∼ 1 lg=m3 per year in the Indo-Gangetic Plain Region
and along the west coast of the Western Region, whereas the
Northeastern Region and the north part of the Northern Region
showed decreases in ambient PM2:5 levels. Details of predicted
PM2:5 in India (Figures S5 and S6), major metropolitan areas
(Delhi, Mumbai, Kolkata, Chennai, and Bangalore) (Table S5),
and population-weighted PM2:5 exposures from our model vs.
other global models are listed in Table S6. The predicted ambient
PM2:5 air pollution can be downloaded at https://doi.org/
10.15139/S3/RFILYH.

The present study included data from 259,627 live-birth chil-
dren born 5 y preceding the survey from 175,865 women in the
DHS/NFHS-4 data. We excluded 6,839 (2.6%) children in the
analysis due to a) living in the Andaman and Nicobar Islands and
Lakshadweep Union Territories, which are islands more than
200 km from the India subcontinent (n=2,282, 0.9%); b) not liv-
ing with their mothers (n=1,912, 0.7%); or c) missing variables
(n=2,645, 1.1%). A total of 252,788 children born between
January 2010 and November 2016 were included from 27,853
clusters (Table 1). In the follow-up period of 7,447,724 child-
months, 11,559 deaths were reported in children <5 years of age
by their mothers. Among these deaths, 7,520 deaths occurred
before the first month of life, and 10,862 deaths occurred during
the first year of life (including 7,520 neonatal deaths). For the
entire cohort, the mean (SD) of 9-month in utero and post-
delivery lifetime average PM2:5 exposure until failure or censor-
ing was 71.1 (28.2) and 73.3 ð29:8Þ lg=m3, respectively. The
characteristics of the cohort are shown in Table 1, stratified by 9-
month in utero average PM2:5 exposure, at levels <49:7 lg=m3,
49.7 to <62:4 lg=m3, 62.4 to <90:3 lg=m3, and ≥90:3 lg=m3.
In general, compared with children in the lowest quartile, chil-
dren in the highest quartile of exposure were more likely to re-
side in rural areas (80.1% vs. 70.8%), were born to mothers with
shorter stature (47.4% vs. 34.2% of mothers were <149:9 cm in
height), lower educational levels (44.3% vs. 19.4% were below
the secondary education level), and lived in households with a
lower wealth index (35.6% vs. 15.6% were in the lowest quartile
of the wealth index). Children residing in central (Chhattisgarh,

Figure 1. Spatial patterns of annual PM2:5 concentrations. (A) Model-predicted annual PM2:5 concentrations with measurements from 133 ground-based moni-
toring stations in subcontinental India in 2018. (B) Annualized change rate of PM2:5 concentrations between 2009–2018. Circles represent ground station with
an annual mean measurement of PM2:5. Note: PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter (fine particulate matter).
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Madhya Pradesh, Uttarakhand, and Uttar Pradesh) and eastern
(Bihar, Jharkhand, Odisha, and West Bengal) India states had
higher estimated ambient PM2:5 levels compared with other
states. Most children included in the analysis were born

between 2012 and 2014, with the least number of children
born in 2016 (Table 2). The correlation between average
in utero and post-delivery lifetime PM2:5 exposure for the same
child was 0.74.

Table 1. Unweighted characteristics of children <5 years of age by four quartiles of 9-month in utero PM2:5 exposure who were born between 2010–2016 in
the Demographic and Health Surveys [DHS, also known as the National Family Health Survey 2015–2016 (NFHS-4)] in India.

Characteristics Entire cohort

Average 9-month in utero PM2:5 exposure quartile (lg=m3) (Q)

Q1 (20:9–<49:7) Q2 (49:7–<62:4) Q3 (62:4–<90:3) Q4 (90.3–153.5)
Average 9-month in utero PM2:5 exposure (lg=m3)
Children (n) 252,788 63,197 63,197 63,197 63,197
Total follow-up in month (n) 7,447,724 1,860,527 1,891,613 1,873,198 1,822,386
Child death at <5 years of age (n) 11,559 2,187 2,688 3,001 3,683
All-cause child mortality rate (n/1,000 child-years) 18.62 14.11 17.05 19.22 24.25
Average 9-month in utero PM2:5 {lg=m3 [mean (SD)]} 71.1 (28.2) 41.4 (6.0) 55.4 (3.6) 75.0 (8.1) 112.6 (13.9)
Average post-delivery lifetime PM2:5 exposure until

death or censoring {lg=m3 [mean (SD)]}
73.7 (29.8) 46.6 (10.6) 57.1 (11.5) 83.6 (25.6) 107.6 (20.1)

Child covariatesa

Sex (%)
Female 47.9 48.4 47.8 47.6 47.3
Male 52.1 51.6 52.1 52.4 52.6

LBW (%)b 13.1 14.2 13.4 13.9 11.2
Birth order (%)
First 36.9 40.8 38.0 37.1 31.5
Second 30.7 34.2 31.1 30.0 27.5
Third 16.1 14.2 15.7 16.4 18.1
≥Fourth 16.3 10.8 15.2 16.5 22.9

Multiple birth (%) 1.65 1.55 1.53 1.81 1.71
Birth at institution (%) 75.3 81.8 75.7 74.8 68.7
Maternal covariatesa

Age at child birth [y (%)]
<19 12.2 12.6 11.3 12.9 11.8
20–24 43.4 43.4 42.2 44.5 43.4
25–29 28.4 28.6 29.2 27.8 28.3
≥30 16.0 15.4 17.5 14.8 16.5

Mothers height [cm (%)]
<149:9 38.3 34.2 34.0 37.5 47.4
150–154.9 33.8 35.3 34.6 33.3 32.2
155–159.9 19.7 21.5 21.9 20.4 15.0
>160 8.2 9.0 9.5 8.8 5.4

Marital status (%)
Not married 1.4 1.9 1.8 1.1 0.9
Married 98.6 98.1 98.2 98.9 99.1

Education (%)
Below secondary level 31.5 19.4 27.3 34.8 44.3
Above secondary level 68.5 81.6 72.7 66.2 55.7

Current smoker (%) 10.0 13.4 14.0 7.5 5.2
Secondhand smoke exposure (%) 56.6 51.8 60.5 56.5 58.3
Household covariatesa

Cook with clean fuel (%) 27.8 38.5 28.4 23.1 21.1
Access to improved toilet (%) 41.5 48.0 44.7 39.3 33.9
Urban/Rural (%)
Urban area 23.6 29.2 23.3 22.1 19.9
Rural area 76.4 70.8 76.7 77.9 80.1

Zone area (%)
Northern 16.6 3.5 25.7 29.4 7.9
North Eastern 13.8 20.9 23.9 9.8 0.5
Central 31.8 18.6 31.2 27.2 50.3
Eastern 21.1 5.0 9.6 28.5 41.3
Western 7.1 14.5 8.7 5.1 0
Southern 9.6 37.5 0.9 0 0

Wealth quartiles (%)c

First (lowest) 25 15.6 21.7 27.1 35.6
Second 25 23.4 26.3 24.5 25.9
Third 25 31.3 26.4 22.4 19.8
Forth 25 29.7 25.6 26.0 18.7

Meteorological covariatesd

Temperature {°C [mean (SD)]} 27.1 (6.4) 26.7 (4.9) 24.7 (7.8) 27.6 (6.0) 29.4 (5.5)
Total rainfall {cm [mean (SD)]} 103 (144) 115 (144) 98 (134) 90 (145) 110 (151)

Note: LBW, low birth weight; PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter (fine particulate matter); SD, standard deviation.
aChild, maternal and household-level covariates collected at the end of the follow-up during the DHS/NFHS-4 interview between 2015–2016.
bAssuming children with missing LBW values are not LBW infants.
cThe household wealth index developed by the DHS/NHFS-4 was calculated using principle component analysis of household ownership of assets.
dMeteorological covariates were averaged post-delivery monthly estimates.
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In the two-exposure Cox regression models, both in utero and
post-delivery lifetime average PM2:5 exposures were significantly
(p<0:05) associated with increases in child mortality, infant
mortality, and neonatal mortality, after controlling for covariates
(Table 3). A 10-lg=m3 increase of in utero PM2:5 exposure was
associated with an increase in neonatal mortality [HR=1:018;
95% confidence interval (CI): 1.001, 1.035], infant mortality
(HR=1:021; 95% CI: 1.006, 1.037), and child mortality
(HR=1:023; 95% CI: 1.008, 1.038). A 10�lg=m3 increase of
post-delivery average PM2:5 exposure was associated with an
increase in neonatal mortality (HR=1:017; 95% CI: 1.003,
1.030), infant mortality (HR=1:015; 95% CI: 1.003, 1.027), and
child mortality (HR=1:013; 95% CI: 1.001, 1.026). In the
single-exposure Cox regression models, with either in utero
PM2:5 exposure or post-delivery average PM2:5 exposure, we
found similar but relatively stronger PM2:5-mortality HRs com-
pared with HRs in the two-exposure models (Table 3). In the pa-
rameter correlation estimates in the two-exposure models, we
found moderate-to-high correlation between exposure in utero
and post-delivery PM2:5 (Table S7). However, the two-exposure
models had lower AICs compared with the single-exposure mod-
els (Table S8). Table S9 lists the HRs and 95% CIs of covariates
in the two-exposure models of child mortality, and Table S10
lists the HRs and 95% CIs of mortality per IQR increase of PM2:5
exposure in the single- and two-exposure models.

We found little evidence of effect modification by most covari-
ates on PM2:5 exposure on mortality in subgroup analysis. Figure 2
shows the estimated in utero and post-delivery lifetime average
ambient PM2:5 effects on child mortality across covariates, and the
results were similar for infant mortality and neonatal mortality
(Figures S7 and S8). We observed some heterogeneity of post-
delivery PM2:5-mortality HRs across different maternal height,
maternal age, and LBW, indicating some interactions between
these covariates and post-delivery PM2:5 exposure. Numerical val-
ues for these results are shown in Table S11. For children with
LBW, we observed in utero PM2:5-mortality HRs of <1. In addi-
tion, we found that LBW was associated with both in utero PM2:5
exposure and child mortality, as shown in additional analyses
(Tables S12 and S13). Our results were robust to different variable
selections (modify 1–3 in Figure S9, Table S14), unweighted anal-
ysis (modify 4 in Figure S9, Table S14), and Cox regressions with
generalized estimating equations to account for the correlation of
outcomes within households and clusters (modifies 5 and 6 in
Figure S9, Table S14), inclusion of time-dependent post-delivery
monthly PM2:5 exposure to replace post-delivery lifetime PM2:5
exposure (modify 7 in Figure S9, Table S14), and crude models
with single or two exposures (modify 8 in Figure S9, Table S14).
The results for the categorized exposure models are listed in Table
S15, showing a consistent linear trend for both categorized in utero
and post-delivery PM2:5 exposure onmortality.

Table 2. Number of children and clusters and their estimated annual ambient in utero and post-delivery lifetime PM2:5 exposure by child birth year for children
in the Demographic and Health Survey [DHS, also known as the National Family Health Survey 2015–2016 (NFHS-4)] in India.

2010 2011 2012 2013 2014 2015 2016 All years

Children/cluster (n)
Children 15,206 40,727 51,960 50,769 51,668 33,951 8,507 252,788
Clustera 8,445 19,766 22,548 22,353 22,419 17,217 5,590 27,835
In utero PM2:5 exposure (lg=m3)b

Mean (SD) 72.5 (31.7) 68.3 (27.0) 72.3 (28.4) 72.1 (29.1) 71.2 (28.0) 70.8 (26.3) 72.0 (27.8) 71.1 (28.2)
Min 21.2 20.9 22.6 22.4 23.1 24.7 23.7 20.9
Q1 45.7 47.9 51.1 49.9 49.7 50.6 50.2 49.7
Median 61.3 60.1 63.6 63.2 62.4 62.5 62.0 62.4
Q3 96.2 86.9 91.8 91.1 90.4 88.2 95.6 90.3
Max 145.1 142.1 153.5 153.0 144.1 144.2 141.4 153.5
Post-delivery lifetime PM2:5 exposure (lg=m3)c

Mean (SD) 73.7 (30.7) 73.0 (28.9) 72.7 (28.3) 73.1 (28.8) 76.0 (31.7) 75.2 (31.3) 67.9 (28.5) 73.7 (29.8)
Min 15.7 14.4 14.0 14.7 15.6 15.1 17.4 14.0
Q1 48.2 50.5 50.5 50.5 51.0 52.6 48.6 50.6
Median 61.5 63.0 62.8 63.3 65.1 67.2 61.6 64.0
Q3 106.4 101.5 98.8 98.5 101.3 90.9 81.6 98.3
Max 211.2 238.3 247.3 234.6 241.8 232.2 228.6 247.3

Note: Max, maximum; min, minimum; PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter (fine particulate matter); Q, quartile; SD, standard deviation.
aCluster is a primary sampling unit (PSU) or a segment of PSU, of around 100–150 households, in the two-stage clustering sampling design of the DHS/NFHS-4.
b9-month average of ambient PM2:5 exposure prior to child birth month.
cAverage of post-delivery lifetime ambient PM2:5 exposure from month of child birth until the month of death, or month of DHS/NFHS-4 interview of the child’s mother (censoring).

Table 3. Hazard ratios (95% confidence intervals) of neonatal (<1month), infant (<12months), and child (<60months) mortality per 10-lg=m3 increase of
ambient PM2:5 exposure for children <5 years of age in the Demographic and Health Surveys [DHS, also known as the National Family Health Survey 2015–
2016 (NFHS-4)] in India.

Models
All-cause neonatal mortality

(<1month of age)
All-cause infant mortality

(<12months of age)
All-cause child mortality

(<60month of age)

Deaths (n) 7,520 10,862 11,559
Two-exposure modelsa In utero PM2:5 1.018 (1.001, 1.035) 1.021 (1.006, 1.037) 1.023 (1.008, 1.038)

Post-delivery average PM2:5 1.017 (1.003, 1.030) 1.015 (1.003, 1.027) 1.013 (1.001, 1.026)
Single-exposure modelsb In utero PM2:5 1.032 (1.019, 1.045) 1.033 (1.021, 1.044) 1.033 (1.022, 1.044)

Post-delivery average PM2:5 1.025 (1.015, 1.035) 1.025 (1.016, 1.034) 1.025 (1.016, 1.033)

Note: Adjusted hazard ratios and 95% confidence intervals for all-cause neonatal mortality, infant mortality and child mortality are shown for 10-lg=m3 increase of ambient PM2:5 dur-
ing 9-month in utero period before child birth and post-delivery periods. Models stratified on child sex, birth month and year, geographical zone (927 strata), adjusted for birth order,
multibirth, birth location, mother’s age, height, marital, education, maternal smoking, household wealth, secondhand smoking, cooking fuel, improved toilet, urban or rural location of
households, monthly temperature, monthly precipitation. PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter (fine particulate matter).
aTwo-exposure models include both ambient PM2:5 exposure during 9-month in utero period before child birth and post-delivery lifetime average until death, or censoring.
bSingle-exposure models include either one of PM2:5 exposure during 9-month in utero period before child birth or post-delivery average until death, or censoring.
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Figure 2. Hazard ratios (HRs) and 95% confidence intervals (CIs) of child mortality per 10-lg=m3 increase of ambient PM2:5 exposure, according to subgroup
analysis for the two-exposure models for children <5 years of age in the Demographic and Health Surveys [DHS, also known as the National Family Health
Survey 2015–2016 (NFHS-4)] in India. Adjusted HRs and 95% CIs for all-cause child mortality are shown for 10-lg=m3 increases in ambient PM2:5 exposure
during both (A) in utero and (B) post-delivery lifetime periods, stratified on subgroups by individual and household-level covariates. Some error bars and
points are off the limits outside the image. All numerical values can be found in Table S8. All model specifications are the same as for the main analysis except
for the subgroup analysis of low birth weight (LBW), which is not included in the main analysis. Red circles (A) represent effects of in utero PM2:5 exposure,
and blue triangles (B) represent the effects of post-delivery lifetime average PM2:5 exposure. p-Values for testing differences among strata for each stratifying
variable are listed. Note: PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter (fine particulate matter); Q, quartile; SHS, secondhand smoking.
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As for the child mortality burden from air pollution, we esti-
mated that 17.6% (95% CI: 12.3%, 22.4%) of mortality could be
reduced if exposures were reduced to 10lg=m3 and that 9.3%
(95% CI: 6.5%, 11.9%) of mortality could be reduced if exposures
were reduced to the National Ambient Air Quality Standard of
India of 40lg=m3 (Table S16).

Discussion

In a large, nationally representative retrospective cohort of chil-
dren <5 years of age in India, we found a consistent association
between exposure to ambient PM2:5 during in utero and post-
delivery periods and elevated child mortality. The estimated asso-
ciations were stronger in single-exposure models compared with
two-exposure models, perhaps due to the strong correlation
between in utero and post-delivery exposures. Similar results
were observed for infant and neonatal mortality. Even though
in utero and post-delivery lifetime PM2:5 exposure showed some
multicollinearity in the two-exposure models, two-exposure mod-
els had smaller AICs compared with single-exposure models,
indicating the proper fit of the two-exposure models. To our
knowledge, this is the first cohort study conducted in India to
estimate the effects of ambient PM2:5 exposure on child survival
in a nationally representative cohort of children.

To estimate monthly PM2:5 concentrations, we developed a
model based on multiple inputs from satellite observations, mete-
orological data sets, and land use information from between 2009
and 2018. We identified disproportionally high levels of PM2:5 in
the Indo-Gangetic Plain Region, where the population density is
high. In addition, we found increasing levels of ambient PM2:5
over the past 10 y, emphasizing an urgent need to control ambient
air pollution in India. Children included in our study had high ex-
posure levels to ambient PM2:5 at nearly twice the National
Ambient Air Quality Standard of India (40lg=m3) (Gautam
2009) and more than seven times the WHO Air Quality
Guidelines (10lg=m3) (WHO 2005). Given the high levels of
ambient PM2:5 throughout India, reducing ambient air pollution
levels could provide a relatively large reduction in child mortality
and substantial health benefits.

The child mortality-HR estimates per 10lg=m3 of PM2:5 ex-
posure in our study were in the range of 1–3%, lower than previ-
ous estimates in LMICs. In sub-Saharan Africa, Heft-Neal et al.
(2018) found a 9% increase in risk of infant mortality associated
with a 10-lg=m3 increase in annual PM2:5 concentration, and
Loomis et al. (1999) found a 7% increase of infant mortality asso-
ciated with a 10-lg=m3 increase of PM2:5 concentration during
the 3–5 d before death in Mexico City. In the present study, given
that the PM2:5 exposure range was three times higher than those in
previous studies, the estimated increases of mortality per IQR (one
IQR=40:6 lg=m3) increase of PM2:5 were in the range of 5–12%,
more similar to earlier findings (Heft-Neal et al. 2018; Loomis
et al. 1999). One study, which assessed early life ambient PM2:5
exposure and child mortality in 43 LMICs, did not find a signifi-
cant association between air pollution and child mortality (Goyal
et al. 2019). This could be due to their use of annual PM2:5 expo-
sure as a proxy for exposure at <1 year of age, which thus intro-
duced measurement error and which may have biased results
toward the null (Zeger et al. 2000). Another study conducted in
Beijing using a time-series design also did not find a significant
association between current-month PM2:5 exposure and infant
mortality (Wang et al. 2019).

The present study has several strengths. First, we used machine
learning to develop a high-quality model of ambient PM2:5 concen-
trations that had monthly temporal resolution and high spatial reso-
lution that could reflect seasonal differences in ambient air

pollution. These estimates of ambient PM2:5 levels could be poten-
tially applied in future health impact assessment and epidemiologi-
cal analysis in India. Second, we used a large, retrospective, and
nationally representative cohort of children <5 years of age in
India based on the well-documented and -conducted DHS/NHFS-4
survey. Third, we applied Cox regression with time-dependent air
pollution, temperature, and rainfall precipitation on child mortality
using the calendar month as the time variable. This approach
allowed us to examine the longitudinal association between air pol-
lution and child mortality and compare post-delivery PM2:5 expo-
sure for children with the same follow-up time. This approach could
largely reduce exposure misclassification compared with previous
studies (Goyal et al. 2019; Heft-Neal et al. 2018), which were based
on yearly PM2:5 averages to assess a binary outcome of child death
at the end of 1 year of age. Our analysis controlled for potential bias
from seasonality and different weather patterns, in addition to using
individual-level, household-level, and cluster-level covariates.
Notably, we did not include LBW as a covariate in the model due to
the potential selection bias of including LBW as a covariate, and for
children with LBW, we found protective effects of in utero PM2:5
exposure. This is similar to the protective effects of maternal smok-
ing on infant mortality for children with LBW observed in the
United States as a result of selection bias (Hernández-Díaz et al.
2006). Finally, the PM2:5–mortality associations were consistently
positive in single- and two-exposure models, and these associations
were robust in additional sensitivity analyses.

Our study also has some limitations. First, no national PM2:5
monitoring data were available during the study period of 2009–
2014, so we lacked ground-level PM2:5 measurement data before
2015 with which to validate our PM2:5 prediction model. The moni-
toring stations were more heavily concentrated in urban areas,
which could have led to differential errors across the country as
well. Similar to previous PM2:5 prediction models (Xiao et al.
2018), our model tended to underestimate some very high PM2:5
values, when monthly PM2:5 concentrations were >350 lg=m3

(Figure S3). Second, we used only total ambient PM2:5 mass con-
centration at the cluster level as our exposure for participants at the
household level, without estimation of different PM2:5 components,
and did not include the impact of other ambient air pollutants, such
as PM with an aerodynamic diameter of ≥10 lm, NO2, and ozone,
or direct household air pollution exposures from cooking, which are
significant in many parts of India. Third, our retrospective cohort
was based on a cross-sectional survey of the DHS/NFHS-4. We
focused only on all-cause mortality reported in the survey, whereas
it is likely that ambient PM2:5 is associated with specific cause of
death. Child birth year, birth month, vital information, and covari-
ates were collected at the end of the study and recalled by mothers
and may have differed from values at the time the children were
born. In addition, we did not have the children’s gestational age at
birth and assigned in utero PM2:5 exposure levels as a 9-month aver-
age prior to the birth, which may not be the case for preterm infants
who have a shorter in utero exposure period. Given this data collec-
tion limitation, our study could have suffered from recall bias and
misclassification. However, we believe most of the maternal and
household-level covariates will be nondifferential misclassification
of outcomes and could most likely bias our results toward the null.
Last, as with all observational studies, our study may have potential
unmeasured confounders that were inadequately controlled for in
this analysis. Our results indicate a need for future prospective
cohort studies (Balakrishnan et al. 2015), including intervention tri-
als of reducing air pollution levels (Clasen et al. 2020), to investigate
air pollution effects on child health.

In conclusion, this study found increased mortality risk asso-
ciated with ambient PM2:5 during the 9-month in utero and post-
delivery periods for children <5 years of age. This study, based
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on a nationally representative retrospective cohort in India, pro-
vides evidence suggesting that in utero and post-delivery PM2:5
exposure contribute to child mortality in developing countries.
Given the high levels of ambient PM2:5 throughout India, expand-
ing air pollution monitoring stations (both in rural and urban
areas), adding more epidemiological research, and making a sub-
stantial effort to reduce ambient air pollution and early life expo-
sures are needed.
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